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Multiscale Aspects of Molecular Motions: From Molecular Vibrations,

Conformational Changes of Biomolecules to Cellular Dynamics
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Molecular aspects of living systems are important because it is the most basic aspects of life as exempli-

fied in biochemistry and structural biology. Since molecules move due to interactive forces between at-

oms, physics plays an important role to understand the dynamic phenomena of living systems. Here

we review our multiscale approaches for computationally treating different levels of molecular motions:

vibrational dynamics of molecules, conformational change of biomolecules, and cellular dynamics using

statistical-mechanics-based models. (J Nippon Med Sch 2022; 89: 9―15)
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Introduction

Since the discoveries of DNA structure by Watson and

Crick1 and protein structures by Kendrew2 and Perutz3, it

has been recognized that the molecular levels of under-

standing is the most fundamental in biology and life sci-

ence. It is now possible to determine the 3D structures of

large protein/RNA/DNA complexes including virus

such as SARS-Cov-2 using X-ray crystallography, NMR

spectroscopy, or cryo-EM microscopy. However, resolving

the 3D structure of a whole cell is still out of reach in

terms of molecular levels. On the other hand, for medical

applications, it is important to understand more “macro-

scopic” aspects of life such as multi-cells, organs, and

whole body. For both levels, molecular or macroscopic,

physics can play a role because “everything” (stability

and dynamics) is determined by the forces between com-

ponents. At a molecular level, there are forces between

atoms (covalent, electrostatic, or subtle types of forces

such as hydrophobic forces), and because of such forces,

atoms move according to Newton’s laws of motions:

where mi is the mass of the i-th particle, ri is the Carte-

sian coordinate of the i-th particle, Fi is the force applied

to the i-th particle. Molecular dynamics (MD) simula-

tions4 are such methods to simulate molecular levels of

dynamics for biomolecules including proteins, DNA,

RNA, where we numerically solve Eq. (1) using (super)

computers. Now we can even simulate the conforma-

tional change of the spike protein of SARS-Cov-25, but it

is still not efficient enough to simulate and describe the

signaling processes or other more complicated processes

in a whole cell6. This motivates us to develop “multis-

cale” methods7, combining different hierarchal levels of

methods to simulate a whole cell or multi-cells. QM/MM

(it is an abbreviation of Quantum Mechanics/Molecular

Mechanics) method8 is such a method, which combines

quantum mechanics and classical mechanics to treat, for

example, catalytic reactions in enzyme proteins, and has

been successfully applied to many biological systems

since the seminal work of Warshel and Levitt9. The enzy-

matic reaction is a basic component of biochemistry or

biology, and the reaction occurs only around the “active”

sites of a protein, validating the use of such a multiscale

method. In addition to the QM/MM method, there are a

lot of multiscale methods, and we here review some of

our recent attempts to devise multiscale methods in mo-

lecular science, chemical physics, or biophysics, hoping
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them to connect to biochemistry and biology of a cell.

Vibrational Dynamics of Molecules

Atoms are often connected by strong covalent interac-

tions in molecules, which is approximated by harmonic

springs, inducing molecular vibrations. When a hydrogen

atom is attached to another atom, its vibrational period is

～10×10−15 second (～10 femtosecond). By combination of

different types of atoms, molecular vibrations become

complex and have longer timescales, reflecting in optical

(IR or UV) spectroscopy10. It is quite important to under-

stand and interpret optical spectroscopy experiments be-

cause molecular structures and dynamics are embedded

in them. Many experimental techniques and theoretical

methods have been devised over 100 years, and here we

focus on the latter. It is known that molecular vibrations

are mathematically well described by independent oscil-

lators, called normal modes, in molecules11. Each normal

mode vibration has a kinetic energy and a spring energy,

so the total energy for N normal modes is written as

where pi is the i-th momentum, ωi is the i-th frequency, qi

is the i-th coordinate of a normal mode. By adding the

information of oscillator strength, this energy representa-

tion can well describe the spectroscopic features of mole-

cules. However, there remains residual interactions be-

tween the coordinates, which will be written as

where Cijk is the coefficients of (3rd order) anharmonic in-

teractions between three coordinates qi,qj,qk, inducing the

interaction among normal modes. Without these anhar-

monic terms, the molecular motions are superposition of

different frequencies, and the resulting motion is called

quasi-periodic. By adding the anharmonic interaction in

Eq. (3), the energy transfer (flow) between normal modes

can takes place. This is a very important process in mo-

lecular dynamics because this phenomenon of energy

transfer is related to the ergodicity problem in statistical

mechanics12, assuring the equilibrium ensemble of many-

degrees of freedom systems including molecules. (Based

on this concept, we can derive a very useful formula for

a chemical reaction rate called transition state theory first

derived by Eyring, Evans, and Polanyi13.) The energy

transfer efficiently occurs through the following resonance

condition when the 3rd order coupling is effective as in

Eq. (3):

In this case, if the i-th mode is excited and all the other

modes are unexcited (with zero energy), the excess en-

ergy tends to flow to modes j and k efficiently.

This is a well-known process in classical mechanics

and this resonance structure Eq. (4) is also present in pro-

tein dynamics14. However, some vibrational modes (such

as bonds containing hydrogen atoms) in (bio)molecules

have high frequencies, which energy is a few times

higher than the thermal energy (～0.6 kcal/mol), and as

such quantum effects might play a role. Quantum me-

chanics is described by the following Schrödinger equa-

tion:

where ħ is the Planck’s constant, H is the Hamiltonian

operator corresponding to the energy of the system, and

Ψ(r1, r2, …rN, t) is the wavefunction of the system. The

wavefunction has all the information of the system, and

we can extract positions and velocities of a system as an

expectation value using the absolute square of the wave-

function as a probability density. Solving this equation is,

however, completely different from solving Newton’s

equation Eq. (1), and much harder (if we can build a

quantum computer, the situation will be totally different

though). Many researchers have been looking for efficient

but approximate methods for solving Eq. (5).

Previously, we addressed this issue of how to solve the

Schrödinger equation for molecular vibration problems.

For small (～10 atoms) molecules, we devised several

“exact” methods, VSCF/VCI method15 and molecular tier

method16, and successfully applied them to N-

methylacetamide and acetylbenzonitrile in gas phase, re-

spectively. For larger systems, we devised a perturbative

method, which treats the anharmonic interaction in Eq.

(3) as a perturbation in Eq. (5), and applied them to

amide-I modes in proteins17 and some vibrational modes

in porphyrin18. We also carried out the corresponding

classical dynamics calculations, which use Newton’s

equations of motion, Eq. (1), and compared them with

the numerical results using quantum mechanics. The

comparison is often good, validating the use of more eco-

nomical classical methods. In Ref.19, we combined the

quantum mechanics and classical mechanics, where we

solve the Schrödinger equation Eq. (5) and Newton’s

equations of motion Eq. (1) simultaneously. This is a kind

of multiscale methods, which is useful for treating a
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Fig. 1 (a) Schematic picture of chemical reaction or con-

formational change along a reaction coordinate. 

The barrier energy from the left basin is ΔE. (b) a 

path search strategy in a two dimensional model 

energy landscape. First we assume a straight but 

energetic path and according to some criterion, we 

can relax the initial path into an optimal one, tra-

versing a transition state.

quantum system with time-varying parameters.

Conformational Changes of Biomolecules

Vibrational dynamics in the last section is assumed to oc-

cur in a single metastable basin of energy landscape.

However, when a molecule reacts or conformational

change takes place, there occurs a “hopping” or a transi-

tion between metastable basins (see Figure 1(a)). This is a

famous activation process in chemistry, and the transition

rate is often described by the Arrehnius law:

where ΔE is an activation energy (energy barrier), T is

the absolute temperature, kB is the Boltzmann constant, ν
is an attempting frequency. This formula shows that the

activation is very slow or rare when ΔE≫kBT, which is

often the case in chemical reactions and conformational

change of molecules.

Here two problems appear for computing this kinetic

rate. One is that this kind of process takes place very

slowly so it is very hard to directly simulate it using MD

simulations. When we solve Eq. (1) for molecules, we

discretize it as (this is the simplest Euler scheme though

we usually use more sophisticated schemes)

using a small time step Δt ～ 1 femtosecond (～1×10−15

second). The activation processes including chemical re-

actions, protein folding, conformational changes, ligand

(un)binding can take place with micro- to milli-second

timescales (10−6～10−3 second), so we need 109～1012 itera-

tions of Eq. (7), which is not feasible for large molecules

even using supercomputers. The other problem is that

the Arrehnius formula itself is not accurate enough for

various types of activation processes, so we need more

sophisticated formulas to understand and estimate the

transition rate.

For attacking these fundamental problems, many meth-

ods have been recently introduced and we explain sev-

eral examples from our own studies. The first method is

the string method devised by E, Ren, and Vanden-

Eijnden20, which is a useful method for finding a path

connecting two metastable states. This is a path-based

method, and as shown in Figure 1(b), we assume an in-

itial path and according to some criterions, we relax such

a path into an optimized one. When we use on-the-fly

string method21, such a path becomes a minimum free en-

ergy path, which can be thermally most populated path.

We applied this method to conformational changes of

two biomolecular systems, adenylate kinase (AdK)22 and

AcrB transporter (membrane protein)23. For each system,

two crystal structures were taken from PDB (protein data

bank), which are regarded as an initial and a final state

for the string calculations. Our purpose is to connect

these two states along a most plausible path.

However, if we use all the coordinates (all the atomic

positions in biomolecules), the string method would fail,

that is, the path does not converge to the optimized one

and gets trapped somewhere not in optimized positions

because the energy landscape of biomolecules is very

rugged24. The most straightforward approach to this

problem is to reply on powerful sampling methods25, but

sampling huge path space is much harder than configu-

rational sampling (and configurational sampling itself be-
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comes intractable for large biomolecules). We thus usu-

ally attempt the other approaches, where we use collec-

tive variables (CVs) to restrict our sampling space and

obtain the result more efficiently. CVs are some variables

in configurational space, and for biomolecules, they

might be some heavy atom coordinates, or angles among

them, or hydrogen-bond distances, which are physically

or chemically motivated or determined by machine learn-

ing (artificial intelligence) techniques. For the above ex-

amples, AdK and AcrB, we used several principal com-

ponents (extracted from principal component analysis (PCA)

for the heavy atom fluctuations calculated by equilibrium

MD simulations of the system) and heavy atoms in the

membrane region, respectively.

In CV space, we first assume an initial path, which is

mathematically continuous but for numerical computa-

tion, it is discretized using “segments” or “beads” as

shown in Figure 1(b). And each bead moves according to

the free energy gradient (on that point) calculated by the

on-the-fly MD simulations using the mean-force dynam-

ics26. If we only use this procedure, every bead converges

to the basins of attraction, and the path image is gone. So

we add another procedure: the distances between the

neighboring beads should be the same, and this is called

equidistance criterion. Because of this, the path always

looks continuous until the end of calculations. From thus

obtained path, we can extract the information of a transi-

tion state because it should be located in the middle of

the path. Transition states give us the mechanism and

bottleneck of the reactions, which will be important for

further elaborations (one such analysis is the committor

test13) or mutation studies.

The minimum free energy path explained above is a

nice representation of a reaction including conforma-

tional change, but it does not necessarily capture the ki-

netic aspects of the reaction. For example, substituting

thus obtained value of the free energy barrier ΔE into the

Arrehnius formula Eq. (6), it does not often predict the

reaction rate with sufficient accuracy even if we evaluate

the prefactor correctly. The most common approach to

obtain kinetic information without using the Arrehnius

formula is Markov state model (MSM)13,27, where we run

short-time multiple MD simulations from different initial

conditions, and calculate the so-called “transition matrix”

from thus obtained huge trajectory data, and evaluate the

mean-first passage times (MFPT)13 between “states”, which

is defined by some clustering algorithm. From MFPT, we

can calculate the transition rate from state A to B as 1/

MFPT(A→B). This method is now very popular for ana-

lyzing the kinetic properties of trajectories, but there is

always concern about how Markovianity (memory-loss)

properties hold for the trajectory data, which are inter-

mixed with the choice of “states” or CVs and the length

of trajectories.

The most general and legitimate approach for extract-

ing kinetic properties and CVs is transition path sampling

(TPS) method introduced by Chandler and coworkers13,28.

In this method, a path itself (not a configuration) is re-

garded as a quantity to be examined, and Monte Carlo

sampling of path space is realized by moving a whole

path using some algorithms. After the calculation, a path

ensemble is generated, from which we can extract the

transition states and kinetic properties and even the most

plausible CVs using the so-called committor test. Though

TPS is conceptually beautiful and general (for over-

damped Langevin dynamics, the Onsager-Machlup ac-

tion method29,30, which is a variant of TPS, can be used),

moving a whole path and generating a path ensemble is

much harder than configurational sampling (which is

mainly used for calculating free energy landscapes), espe-

cially for larger biomolecules and slower processes. This

is why many researchers are trying to develop more effi-

cient and less expensive methods for path sampling, in-

cluding transition interface sampling28, forward flux sam-

pling31, and nonequilibrium umbrella sampling32 etc.

Recently we have been using the weighted ensemble

(WE) method introduced by Kim and Huber, and further

elaborated by Zuckerman and coworkers33. In the WE

method, we first assume some CV space where state A

and B are defined. We then divide CV space into several

segments, which are called cells, so that the short-time

MD simulation can fully explore a single cell. In each

cell, we prepare several trajectories or particles, and each

particle has a weight, where the sum of weights in each

cell can approximate the population in the cell. There is

another procedure: birth and death processes. We prede-

fine the number of particles N in a cell, and if a particle

moves into an empty cell, the particle is then divided

into N particles there. During this process, the weight is

also appropriately divided so that the population in a

cell becomes constant. If there are more than N particles

in a cell, we need to “kill” some of them so that the

number in a cell becomes the same N.

We applied this WE method to several biomolecular

systems. The first example is folding/misfolding transi-

tions of a small artificial protein, chignolin34. With the

conventional amber force field, this system has two me-

tastable regions, one is the folded region and the other is
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misfolded one. For easiness of calculations, Mitsutake

and Takano elevated the temperature up to 420 K (near

folding temperature), and carried out brute-force MD

simulations to observe the folding/misfolding transitions

of chignolin35. But they needed to simulate at least ～ 1

microsecond to calculate the relaxation modes and the

transition matrix. By using the WE method, we can

simulate the transition with much shorter timescale MD

simulations though there is a burden that we have to rely

on multiple MD simulations with many replicas (～1,000

particles). However, this burden will be soon overcome

because of the advance of multiple core technology. In

this case of chignolin dynamics, we used two different

types of CVs: one is hydrogen-bond distances and the

other is diffusion map coordinates34, but the result does

not depend much on the choice of CVs.

The second example is the isomerization of a substrate

in PIN1 enzyme protein36. In this case, a torsional angle

(omega angle), representing the rigidness of the peptide

plane of proline in the substrate, is the target of calcula-

tions and naturally a candidate for CVs, and the isomeri-

zation barrier is rather high (～10 kcal/mol) even though

the catalytic interaction between the substrate and the

enzyme lowers the original barrier (～20 kcal/mol) in

water. We can estimate and characterize the kinetic prop-

erties of the forward and backward transitions of

isomerization, and also carried out some mutation stud-

ies for further comparison with free energy landscape

calculations36.

Cellular Dynamics Based on Statistical Mechanics

The MD simulation methods explained above have been

developing because of the advances of hardware, soft-

ware, and algorithms, and the target system is now as

big as virus5 or a very crowded environment in a cell6,

but it is still not efficient for simulating a whole cell. Inci-

dentally there is famous Moore’s law, predicting that the

computing power becomes x1.5 every two years. Assum-

ing this law and that the number of atoms in a cell is

1,014, we can execute 1 second MD simulation of a

whole cell within 100 days in 75 years37. This is beyond

the patience of current researchers, and we need more ef-

ficient and approximate methods to circumvent this situ-

ation.

A traditional approach in physics for this problem is

coarse-graining. For example, in fluid dynamics of water,

we consider the density and velocity fields for water not

the positions and velocities of individual water mole-

cules, making it possible to simulate large-scale hydrody-

namic phenomena such as atmosphere-ocean dynamics

on earth. Another coarse-graining procedure applies to

biomolecular simulations, where each residue is treated

as a ball, neglecting the details of side chains etc.38. In

MD simulations, we usually employ empirical force

fields, which is determined by some quantum chemistry

calculations and experiment, but its validity is limited.

Recently many researchers use machine learning (ML) or

artificial intelligence to improve the accuracy of force

fields38, and ML can be considered as a systematic way to

coarse-grain a molecular system.

To simulate cell dynamics, coarse-graining is still diffi-

cult because a cell is a strongly heterogenous system, and

we need to rely on more empirical and approximate ap-

proaches. Though there are a lot of such approaches to

computationally treat a cell, we chose to use the Cellular

Potts Model (CPM), which is based on statistical mechan-

ics39. A cell consists of many small “segments” which is

placed on a (two-dimensional or three-dimensional) lat-

tice, and the occurring frequency of the segment configu-

ration is determined by the “energy” of a cell. The mo-

tion of the segment is determined by a Metropolis proce-

dure often employed in Monte Carlo methods [4]: We

first choose a segment to move in a random way, and

then calculate the energies before and after the move-

ment, and the movement is accepted or rejected using a

criterion related to the energy difference.

This model itself has nothing to do with the molecular

picture of a cell, and is regarded as an emulator of a cell

(like cellular automata, e.g., life game). However, there is

a connection to a molecular picture: in an actual situ-

ation, there are chemicals such as Ca ion or ATP gener-

ated and coupled to the cellular dynamics. As such, in

the simulation, we need to set up the equation of motion

for such chemicals, which are basically reaction-diffusion

(RD) equations40 used in modeling pattern dynamics for

biological systems (a typical example is the Turing pat-

tern). To simulate cellular dynamics with these chemical

details, we need to combine CPM and the RD equations,

which is another type of multiscale modeling.

We applied this combined method to wound healing

process for a model tissue, which was experimentally set

up and examined by Takada and coworkers41. In the ex-

periment, they applied stretching forces to a model tissue

with a wound, and the healing process turned out to be

faster compared to the case without such forces. We

modeled this situation with the above method, and suc-

cessfully reproduced the experimental finding42. We are

now trying to use the same strategy for simulating angi-
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ogenesis, which is most important for wound healing for

real human systems, to further elucidate the basic mecha-

nisms of mechanotheraphy43.

In this review, we started with a discussion of the vi-

brational motion of molecules, then protein conforma-

tional changes, and finally cellular dynamics. While there

are “subtle” connections between molecular vibrations

and conformational changes, or between molecular con-

formational changes and cellular dynamics, the “exact”

connections are lost and difficult to characterize. We

hope to uncover these connections by combining new ex-

periments with more sophisticated algorithms, theories,

and computations.
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